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Abstract
In this paper we consider a system consisting of a two-level atom, initially
prepared in a coherent superposition of upper and lower levels, interacting with
a radiation field prepared in generalized quantum states in the framework of
multiphoton Jaynes–Cummings model. For this system, we show that there
is a class of states for which the fluctuation factors can exhibit the revival-
collapse phenomenon (RCP) similar to that exhibited in the corresponding
atomic inversion. This is shown not only for normal fluctuations but also for
amplitude-squared fluctuations. Furthermore, apart from this class of states we
generally demonstrate that the fluctuation factors associated with three-photon
transition can provide the RCP similar to that occurring in the atomic inversion
of the one-photon transition. These are novel results and their consequence is
that the RCP occurring in the atomic inversion can be measured via a homodyne
detector. Furthermore, we discuss the influence of the atomic relative phases
on such phenomenon.

PACS numbers: 42.50.Dv, 42.60.Gd

1. Introduction

Interaction between the radiation field and matter is an important topic in modern physics.
One of the most important systems, describing well the field–matter interaction, is the Jaynes–
Cummings model (JCM). The JCM consists of a single two-state system interacting with a
single quantized radiation field mode [1]. Furthermore, the JCM has become experimentally
realizable with the Rydberg atoms in high-Q microwave cavities (e.g., see [2]). Moreover,
the JCM is exactly solvable under the rotating wave approximation and many interesting
phenomena have been observed. The most important phenomenon is the behaviour of the
population inversion where instead of displaying steady Rabi oscillations in the case of a
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classical field coupled to the atom [3], there is an initial collapse of these oscillations followed
by regular revivals that slowly become broader and eventually overlap [4]. In fact, the revival-
collapse phenomenon (RCP) of the atomic inversion is a pure quantum mechanical effect
having its origin in the granular structure of the photon-number distribution of the initial field
[5]. The features of the RCP for the JCM have been analysed in details in [4]. Moreover, it
has been shown that the envelope of each revival is a readout of the photon distribution, in
particular, for the states whose photon-number distributions are slowly varying [6]. It is worth
mentioning that observation of the RCP has been performed using the one-atom mazer [2],
which is more sophisticated than the dynamics of the JCM.

On the other hand, quadrature fluctuations of the radiation field are important quantities
in quantum optics, which can be measured by a homodyne detection in which the signal is
superimposed on a strong coherent beam of the local oscillator. The question we would like to
address here is: can the quadrature fluctuations of the multiphoton JCM include information
on the RCP of the atomic inversion? If it is so then the RCP can be detected via a homodyne
detector. In other words, the quadrature fluctuations as well as atomic inversion of the JCM
can be measured by means of one device. In this case the scheme will be simple, involving one
beam splitter and a reference field in a coherent state. In the present paper, we show that such
behaviour can occur. Specifically, we show that the radiation-field fluctuation (i.e. squeezing)
factors of the cubic JCM can carry information on the atomic inversion of the standard JCM
(i.e. a JCM which involves one photon for making atomic transition) for the same initial states.
Moreover, we show that there is a class of states whose fluctuation factors can include explicit
information on the RCP. Furthermore, we demonstrate that such phenomenon can occur in
the higher-order fluctuation, e.g., also amplitude-squared fluctuations. In fact, these are novel
results and may be useful for experimentalists. We have to stress that in this paper we are not
looking for squeezing of the JCM, which has been intensively studied by several authors (e.g.,
see [7, 8]). Nevertheless, we look at the occurrence of the RCP in the fluctuation factors. This
will be investigated in the following order. In section 2, we give the basic calculations related
to the system under consideration. In sections 3 and 4, we discuss the occurrence of the RCP
in the normal fluctuations and amplitude-squared fluctuations, respectively. The results are
summarized in section 5.

2. General considerations

In this section, we give both the explicit form for the Hamiltonian of the system under
consideration and the basic calculations related to such system. The system considered in this
paper is the multiphoton resonance interaction of a single-mode field with a two-level atom,
which is described by the mth-photon JCM. The effective Hamiltonian controlling the system
in the rotating wave approximation (RWA) is [9]

Ĥ

h̄
= ω0â

†â + ωaσ̂z + λ(âmσ̂+ + â†mσ̂−), (1)

where σ̂± and σ̂z are the Pauli spin operators, ω0 and ωa are the frequencies of cavity mode and
the atomic transitions, respectively, λ is the atom-field coupling constant and m is the number
of photons involved in the atomic transition. Defining two new operators as

Ĉ1 = ω0â
†â + ωaσ̂z, Ĉ2 = λ(âmσ̂+ + â†mσ̂−). (2)

In the exact resonance case (i.e. ωa = mω0) it is easy to prove that Ĉ1 and Ĉ2 are constants
of motion and also they commute with each other. This fact means that the evolution of the
mean-photon number and the atomic inversion of the system include typical information on
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each other. In the interaction picture, the unitary evolution operator takes the form

ÛI (T , 0) = exp

(
−i

T

λ
Ĉ2

)

= cos(T D̂) − i
sin(T D̂)

λD̂
Ĉ2, (3)

where

T = λt, D̂2 = â†mâmσ̂−σ̂+ + âmâ†mσ̂+σ̂−. (4)

It is worth recalling that σ̂ 2
± = 0.

On the other hand, to keep the analysis quite general, we consider the field prepared
initially in a general pure quantum state described by

|ψ(0)〉 =
∞∑

n=0

Cn|kn〉, (5)

where Cn represent the probability amplitudes for the state under consideration such that∑∞
n=0 |Cn|2 = 1, and k is a parameter whose value will be specified in the text. Throughout

the paper, we consider the probability amplitudes Cn to be real. It is worth mentioning that
when Cn represent the probability amplitudes of the well-known Gluaber coherent state and
k �= 1, then (5) gives the k-photon coherent states [10, 11]. These states are obtained from
kth harmonic generation using Brandt–Greenberg operators [12]. It has been shown that
such a class of states can exhibit amplitude kth-power squeezing [11] when they interact with
the nonlinear nonabsorbing medium modelled as an anharmonic oscillator. We proceed by
considering that the atom is initially in the coherent superposition of the excited and ground
states as

|θ, φ〉 = cos θ |+〉 + exp(−iφ) sin θ |−〉, (6)

where |+〉 and |−〉 denote excited and ground atomic states, respectively; θ and φ are the
relative phases between these two atomic states. Actually, preparing the atom in the coherent
superposition states is important because of its applications to noise quenching by correlated
spontaneous emission [13], quantum beats [14] and noise-free amplification [15].

Now the initial state of the field–atom system can be expressed as

|�(0)〉 = |ψ(0)〉
⊗

|θ, φ〉. (7)

Therefore, the dynamical wavefunction of the total system in the interaction picture is given
by

|�(T )〉 = ÛI (T , 0)|�(0)〉

=
∞∑

n=0

[G1(n, T )|+, n〉 + G2(n, T )|−, n + m〉], (8)

where

G1(n, T ) = Cn cos θ cos(T
√

h(n,m)) − i exp(−iφ)Cn+m sin θ sin(T
√

h(n,m)),
(9)

G2(n, T ) = exp(−iφ)Cn+m sin θ cos(T
√

h(n,m)) − iCn cos θ sin(T
√

h(n,m)),

while h(n,m) = (n+m)!
n! and in the course of the calculation we have considered k = 1

(cf (5)). For future purposes, we derive different moments for the â† and â associated with the
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state (8) as

〈â†s2(T )âs1(T )〉 =
∞∑

n=0

[
G∗

1(n + s2, T )G1(n + s1, T )

√
(n + s1)!(n + s2)!

n!

+ G∗
2(n + s2, T )G2(n + s1, T )

√
(n + m + s1)!(n + m + s2)!

(n + m)!

]
, (10)

where s1 and s2 are positive integers. Also the atomic inversion for the dynamical state (8) is

〈σz(T )〉 =
∞∑

n=0

{[P(n) cos2 θ − P(n + m) sin2 θ ] cos(2T
√

h(n,m))

−
√

P(n)P (n + m) sin φ sin(2θ) sin(2T
√

h(n,m))}, (11)

where P(n) = C2
n .

We conclude this section by mentioning that, along the lines of [16], the use of the
Hamiltonian (1) is called an effective Hamiltonian approach (EHA). Nevertheless, the full
microscopic Hamiltonian approach (FMHA) associated with the system can be obtained by
considering the Hamiltonian, which describes the interaction between (m + 1)th-level atom
in a cascade configuration with the single-mode radiation field in the RWA [17]. Under
certain conditions, the intermediate levels can be cancelled out adiabatically and the system
reduced to that of the two-level atom. In this case, the probability amplitudes of the dynamical
wavefunction of the system include nontrivial overall phase depending on the intensity of the
field. This makes the results associated with the FMHA completely different from those with
the EHA, in particular, quantities that depend on the off-diagonal elements of the reduced
density matrix such as the quadrature fluctuations. Alternatively, the Hamiltonian (1) can
be modified to provide similar information—under certain conditions—as that of the FMHA
[16]. This can be achieved by including the dynamic Stark shift in (1), i.e. including such a
term −â†â(β1σ̂+σ̂− + β2σ̂−σ̂+) in (1) where β1, β2 are dynamic Stark shift parameters. This
technique is called the modified effective Hamiltonian approach (MEHA) and for the sake of
comparison we give some details about it. For instance, the dynamical state for the system
associated with the MEHA in the interaction picture (considering the initial condition (7)) is

|�̃(T )〉 =
∞∑

n=0

[G̃1(n, T )|+, n〉 + G̃2(n, T )|−, n + m〉], (12)

where

G̃1(n, T ) = exp(itVn)

{
Cn cos θ cos(t	n)

+
i

	n

[
(nβ1 − Vn)Cn cos θ − λ

√
(n + m)!

n!
exp(−iφ)Cn+m sin θ

]
sin(t	n)

}
,

G̃2(n, T ) = exp(itVn)

{
exp(−iφ)Cn+m sin θ cos(t	n) (13)

− i

	n

[
(Vn − (n + m)β2) exp(−iφ)Cn+m sin θ

+ λ

√
(n + m)!

n!
Cn cos θ

]
sin(t	n)

}
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and

Vn = 1

2
[nβ1 + (n + m)β2], 	n = 1

2

[
(nβ1 − (n + m)β2)

2 + 4λ
(n + m)!

n!

] 1
2

. (14)

When m = 2 expressions (13) and (14) reduce to (40)–(43) in [16]. However, there is a
misprint in (41) of [16] where the term (nβ1 − Vn) has to be (Vn − (n + 2)β2). Comparison
between (9) and (13) shows that involving the dynamic Stark shift in the effective Hamiltonian
makes the probability amplitudes including nontrivial overall phase, which depends on the
intensity of the field, as we mentioned above in relation to the FMHA.

Throughout the paper, we focus the attention on the EHA. To be more specific, we use
expressions (10) and (11) to make a comparative study between the behaviour of the fluctuation
factors and atomic inversion. Also, we give only some comments on the MEHA aimed at
showing the differences between the EHA and MEHA. So the discussion is generally given
for the EHA, except specifying that it is related to the MEHA.

3. The revival-collapse phenomenon in normal fluctuations

In this section, we show that information stored in 〈σ̂z(T )〉 can be obtained from fluctuation
factors of the second-order (normal) fluctuation. To do so we define two quadrature operators
as X̂ = 1

2 [â + â†], Ŷ = 1
2i

[â− â†]. These quadratures satisfy the commutation rule [X̂, Ŷ ] = i
2

and thus the uncertainty relation is 〈(�X̂(T ))2〉〈(�Ŷ (T ))2〉 � 1
16 . Therefore, the fluctuation

factors associated with the quadratures X̂ and Ŷ , respectively, read

F1(T ) = 2〈(�X̂(T ))2〉 − 1
2 = 〈â†(T )â(T )〉 + Re〈â2(T )〉 − 2(Re〈â(T )〉)2,

(15)
S1(T ) = 2〈(�Ŷ (T ))2〉 − 1

2 = 〈â†(T )â(T )〉 − Re〈â2(T )〉 − 2(Im〈â(T )〉)2.

The system is able to yield normal squeezing when F1(T ) < 0 or S1(T ) < 0: however,
this is not the aim of this paper. Based on (15) we illustrate that there are two approaches,
namely, natural phenomenon and numerical simulation, which can provide the RCP in F1(T )

and/or in S1(T ). In the first approach, we show that there is particular class of states that can
naturally exhibit the RCP in the fluctuation factors. Nevertheless, in the second approach we
demonstrate that S1(T ), for particular values of m, can exhibit similar behaviour as that of
〈σ̂z(T )〉 of the standard JCM. In fact these two approaches are related to two different situations
in which different terms dominate the variance of the field amplitude. To be more specific,
for the natural phenomenon the origin of the RCP in the normal fluctuation is 〈â†(T )â(T )〉;
however, that in the numerical simulation approach is Re〈â2(T )〉, as we will show below.
Furthermore, we investigate the influence of the atomic relative phases on the occurrence of
the RCP in the fluctuation factors. Also we make some comments on the differences between
the EHA and MEHA related to the phenomenon under consideration. These points will be
investigated in the following two subsections.

3.1. Natural phenomenon

This approach is based on the fact that Ĉ1 is a constant of motion and then the evolution of
the 〈â†(T )â(T )〉 and 〈σ̂z(T )〉 for the same value of m yields similar behaviour. So that if there
are states for which

〈â(T )〉 = 0, 〈â2(T )〉 = 0, (16)

simultaneously then the two fluctuation factors in (15) reduce to 〈â†(T )â(T )〉. In other words,
F1(T ) and/or S1(T ) provide an information on the atomic inversion. Now we are looking
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for such types of state. For convenience we restrict the analysis to m = 1 and θ = 0. The
associated quantities with this case can be obtained from (10) as

〈â(T )〉 =
∞∑

n=0

CnCn+1

√
n + 1

{
cos[T

√
h(n, 1)] cos[T

√
h(n + 1, 1)]

+

√
n + 2

n + 1
sin[T

√
h(n, 1)] sin[T

√
h(n + 1, 1)]

}
,

(17)

〈â2(T )〉 =
∞∑

n=0

CnCn+2

√
(n + 1)(n + 2)

{
cos[T

√
h(n, 1)] cos[T

√
h(n + 2, 1)]

+

√
n + 3

n + 1
sin[T

√
h(n, 1)] sin[T

√
h(n + 2, 1)]

}
.

It is obvious that conditions (16) are satisfied simultaneously only when

CnCn+1 = 0, CnCn+2 = 0 (18)

and these equalities can be satisfied for three-photon states, four-photon states and so on.
The k-photon coherent states (cf (5)) can play this role, e.g. when k = 3, 4, . . . , etc. It is
worth mentioning that the properties of the three-photon states have been investigated in [18].
Further, examples of the four-photon states are the orthogonal-even, (-odd) coherent states
[19] and phased generalized binomial states [20]. Here we shed light on the behaviour of
F1(T ) of the JCM against the orthogonal-even coherent states. Their forms can be obtained
from (5) by setting k = 1 and replacing the probability amplitudes Cn by

C2n = B
α2n

√
(2n)!

[1 + (−1)n], (19)

where B is the normalization constant having the form

B = [2 cosh|α|2 + 2 cos|α|2]−
1
2 . (20)

Such types of state have been investigated in [19] showing that they cannot exhibit second-
order squeezing, whereas near-optimal simultaneous-quadrature fourth-order squeezing can
be obtained. Also they can be generated using conditional-measurement technique [21, 22].
Figure 1 has been plotted for F1(T ) of the EHA with the field initially in orthogonal-even
coherent states for given values of the parameters. From this figure it is clear that the RCP is
established. In fact, the revivals are four times compared to those of the corresponding initial
coherent light since orthogonal-even coherent states are a superposition of four-component
coherent states. This leads to T

(f )

R = T
(c)
R

/
4, where T

(c)
R and T

(f )

R are the revival times
associated with the initial coherent states and orthogonal-even coherent states, respectively.
This fact can be deduced as follows. For the initial coherent light the revivals occur by
estimating the time that neighbour terms in the sums are in phase (for n̄ = √〈n̂(0)〉, where
n̂(0) = â†(0)â(0)):

2T
(c)
R [

√
〈n̂(0)〉 + 1 −

√
〈n̂(0)〉] � 2π. (21)

Nevertheless, orthogonal-even coherent states are four-photon state and thus the difference in
phase of two (non-zero) neighbour terms will be

2T
(f )

R [
√

〈n̂(0)〉 + 4 −
√

〈n̂(0)〉] � 2π. (22)
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Figure 1. The fluctuation factor F1(T ) of the standard JCM against the scaled time T when the
optical cavity field initially prepared in orthogonal-even coherent states and the atom is in the
excited atomic state for |α| = 7.

Expressions (21) and (22) lead to

T
(c)
R � 2π

√
〈n̂(0)〉, T

(f )

R � π

2

√
〈n̂(0)〉. (23)

This means that T
(f )

R = T
(c)
R

/
4.

The influence of the atomic relative phases on the behaviour of F1(T ) for the present
approach can be investigated as follows. As is well known—for the standard JCM and
for certain choice of the atomic phases (i.e. for θ and φ)—‘coherent trapping’ occurs [23].
Actually, similar conclusion can be given here, i.e. the interaction has a little effect on F1(T ).
For example, for orthogonal-even coherent states this can occur when θ = π/4, φ = 0 and
m = 4. The origin in taking m = 4 is quite obvious from (11), where atomic trapping occurs
when 〈σ̂z(T )〉 � 0 (or in the language of the present approach when F1(T ) � 〈n̂(0)〉), i.e.

P(n) − P(m + n) � 0. (24)

Expression (24) leads to P(n) � P(n + m), i.e. the two successive non-zero values of the
photon-number distribution should be comparable. This occurs when m is equal to the parity
of the initial state of the optical cavity field. More illustratively, atomic trapping for the mth
JCM with optical cavity field prepared initially in, e.g., one-, two-, three- and four-photon
states occurs only when m = 1, 2, 3 and 4, respectively.

We conclude this section by the following remark. For the natural phenomenon approach,
the EHA and MEHA provide almost similar behaviour in relation to the RCP in, e.g., F1(T ). In
this case the nonvanishing term (i.e. the mean-photon number) depends only on the diagonal
elements of the density matrix and then the intensity-dependent phases in the MEHA are
cancelled out. We should point out that the RCP can occur in the fluctuation factors for
strong-intensity regime 〈n̂(0)〉 	 1, which is the same condition for the EHA and MEHA to
provide similar behaviour [16].
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3.2. Numerical simulation

In this section, we discuss the possibility of obtaining the RCP from the second-order
fluctuation factors of the mth (m > 2) JCM similar to that of 〈σ̂z(T )〉 of the standard JCM,
which will be denoted by 〈σ̂z(T )〉m=1. We assume that the initial states are not those for which
the natural phenomenon can occur. Careful examination of (15) shows that the RCP can occur
in F1(T ) (or S1(T )) provided that the values of Re〈â(T )〉 (or Im〈â(T )〉) are approximately
zero in the course of the interaction since these quantities are squared and then they spoil the
RCP (if it exists). On the other hand, for m > 2, 〈â†(T )â(T )〉 exhibits chaotic behaviour (see
figure 3(a)). Therefore, under these circumstances, if S1(T ), say, can exhibit the RCP then
the origin is in Re〈â2(T )〉. For this reason, we compare the form of Re〈â2(T )〉 with that of
〈σ̂z(T )〉m=1 for optical cavity field initially in coherent states (with real probability amplitudes)
and the atom in the atomic excited state. The aim of such comparison is two-fold: (i) To find
the exact values of the number of photons involved in the atomic transition, i.e. m, for which
such phenomenon can occur. (ii) To explore the form of the modified fluctuation factor, which
can include typical information on the behaviour of the 〈σ̂z(T )〉m=1. Now from (10) we arrive
at

〈â2(T )〉 = 〈n̂(0)〉
∞∑

n=0

P(n)

[{√
(n + m + 2)(n + m + 1)

(n + 2)(n + 1)

}

× sin(T
√

h(n,m)) sin(T
√

h(n + 2,m))

+ cos(T
√

h(n,m)) cos(T
√

h(n + 2,m))

]
, (25)

where P(n) is the photon-number distribution for the coherent light and 〈n̂(0)〉 = |α|2.
We treat the problem in a strong-intensity regime when m is finite. In this case the terms
contributing effectively to the summation in (25) are those for which α2 � n. Therefore, the
square root included in the curly brackets in (25) tends to unity and thus reads

〈â2(T )〉 = 〈n̂(0)〉
∞∑

n=0

P(n) cos[T (
√

h(n + 2,m) −
√

h(n,m))]. (26)

On the other hand, the corresponding atomic inversion of the standard JCM is

〈σ̂z(T )〉 =
∞∑

n=0

P(n) cos(2T
√

n + 1). (27)

Apart from the constant quantity 〈n̂(0)〉 in (26), expressions (26) and (27) yield similar
behaviour provided that the arguments of the cos(·) are comparable. Therefore, we adopt the
following proportionality factor:

f (n) =
√

h(n + 2,m) − √
h(n,m)

2
√

n + 1
. (28)

After straightforward calculation (28) takes the form

f (n) =
n

m−3
2

[
2m + m

n
(m + 3)

] √∏m−1
j=0

(
1 + m−j

n

)
2
√

1 + 1
n

[√(
1 + m+1

n

) (
1 + m+2

n

)
+

√(
1 + 1

n

) (
1 + 2

n

)] . (29)

In the strong-intensity regime, expression (29) reduces to

f (n) � m

2
n

m−3
2 . (30)
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(a) (b)

Figure 2. The fluctuation factor S1(T ) of the JCM for m = 3 (a) and the atomic inversion for
m = 1 (b) against the scaled time T when the field prepared initially in the coherent state with
|α| = 5 and the atom in the atomic excited state θ = 0.

(a) (b)

Figure 3. The mean-photon number (a) and the moment 〈â2(T )〉 (b) against the scaled time T for
the same values of the parameters as those in figure 2 but with m = 3.

It is evident from (30) that the allowed value of m for which the RCP can occur in S1(T ) is only
m = 3 and thus f (n) � 3/2. The validity of the above facts has been checked numerically in
figures 2 and 3.

Figures 2(a) and (b) have plotted for S1(T ) and 〈σ̂z(T )〉, respectively, for given values
of the interaction parameters. According to the above discussion, the RCP can occur only
in S1(T ) (since in this case Re〈â(T )〉 �= 0 and Im〈â(T )〉 = 0). Comparison between
figures 2(a) and (b) shows that they roughly exhibit similar behaviour in a sense that they
revive, collapse, remain quiescent, revive, collapse and so on. For large interaction, time
overlapping between successive revivals occurs. Nevertheless, they include different scales,
which we treat shortly. Figures 3(a) and (b) shed light on the evolution of the 〈â†(T )â(T )〉
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Figure 4. The rescaled fluctuation factor Q1(T ) given by (28) for the same values of the parameters
as in figure 2(a).

and Re〈â2(T )〉(=〈â2(T )〉), respectively, i.e. the non-vanishing components in S1(T ). In these
figures the values of the parameters are the same as those in figure 2(a). It is obvious that
Re〈â2(T )〉 is responsible for the occurrence of the RCP in S1(T ), as discussed above. Now
within the context of the above analysis the rescaled fluctuation factor for the cubic JCM,
which can provide typical information on the 〈σ̂z(T )〉m=1, is

Q1(T ) = S1
(

2
3T

) − 〈n̂(0)〉
〈n̂(0)〉 . (31)

Figure 4 is given for Q1(T ) that is represented by (31) for the same values of the parameters
as those given in figure 2(a). Comparison between figures 2(b) and 4 is instructive. Actually,
this is a novel result and its consequence is that the RCP of the 〈σ̂z(T )〉m=1 can be obtained
from the modified fluctuation factor of the cubic JCM for the same initial optical cavity field.

Now we demonstrate the influence of atomic relative phases on the behaviour of Q1(T ).
Actually, in contrast to the natural phenomenon as well as the atomic inversion the rescaled
fluctuation factor is insensitive to the values of the atomic relative phases. This fact can easily
be recognized, where in the strong-intensity regime and for θ = π/4, φ = 0, one can show
that Re〈â2(T )〉 includes such a term [P(n)+P(n+m)]/2, which cannot be zero for P(n) �= 0.
Therefore, (31) yields typical information on the atomic inversion provided that the atom is
either in the excited state or in the ground state.

From the above discussion generally the RCP occurring for the EHA cannot be established
for the MEHA since for the latter Re〈â(T )〉 �= 0 and Im〈â(T )〉 �= 0 where the probability
amplitudes of the wavefunction include non-trivial phase (cf (13)). Nevertheless, for particular
type of states, e.g. parity states such as the even and odd coherent states, with strong initial
mean-photon number the EHA and MEHA can provide almost similar behaviour. As in this
case 〈â(T )〉 = 0, λh(n,m)

	n
� 1 and also such type of terms, e.g., (Vn−(n+m)β2)

	n
� 0. Therefore,

the rescaled fluctuation factor for both, i.e. the EHA and MEHA, is almost similar except the
Re〈â2(T )〉 in the MEHA involves cos(2T ) additionally. However, for particular values of the
initial mean-photon number, the maxima of cos(2T ) occur in the course of the revival times of
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Q1(T ) and then the overall behaviour does not affect. The final remark: in the strong-intensity
regime and when β1 = β2 = λ = ω, the fluctuation factors of the MEHA—defined in the
framework of the slowly varying operators–would be typically as those of the EHA defined
in (15).

From the discussion given in this section, we can conclude that generally the EHA can
be used to investigate the RCP for natural phenomenon approach but it is inadequate for
numerical simulation approach. Nevertheless, for particular types of initial states—those for
which the EHA and MEHA provide almost similar behaviour—the EHA is adequate also for
numerical simulation approach.

4. The revival-collapse phenomenon in the amplitude-squared fluctuations

As we did in the previous section, we discuss briefly here whether the higher-order fluctuation
factors can carry information on the corresponding atomic inversion or not. As an example
we consider the amplitude-squared fluctuations [24]. The amplitude-squared fluctuations can
occur in the fundamental mode in the second harmonic generation and can be converted into
normal fluctuations. The two quadratures corresponding to the real and imaginary parts of the
square of the field amplitude are

X̂2 = 1

4
[â2 + â†2], Ŷ2 = 1

4i
[â2 − â†2]. (32)

These quadratures obey the uncertainty relation

[X̂2, Ŷ2] = 1

4i
(2â†â + 1). (33)

After minor calculation, one can show that the two fluctuation factors associated with the
amplitude-squared fluctuations are

F2(T ) = 〈â†2(T )â2(T )〉 + Re〈â4(T )〉 − 2(Re〈â2(T )〉)2,
(34)

S2(T ) = 〈â†2(T )â2(T )〉 − Re〈â4(T )〉 − 2(Im〈â2(T )〉)2,

it is said that the system is able to yield amplitude-squared fluctuation when F2(T ) < 0 or
S2(T ) < 0. Similar to section 3, we consider two approaches, which are natural phenomenon
and numerical simulation. These will be discussed in the following. As the comparison
between the EHA and MEHA leads to conclusions similar to those given in section 3 we will
not discuss this issue in the present section.

4.1. Natural phenomenon

In this section, we are seeking states, which evolve with the standard JCM, say, in such a way
that the contribution of the moments 〈â2(T )〉 and 〈â4(T )〉 to the fluctuation factors (34) is
negligible in the course of the interaction. For such states expressions (34) reduce to

F2(T ) = S2(T ) = 〈â†2(T )â2(T )〉. (35)

In fact, the quantity 〈â†2(T )â2(T )〉 can provide behaviour similar to that associated with the
mean-photon number, i.e. atomic inversion. We have already introduced a class of states,
which can fulfil the above requirements. That is the k-photon coherent states given by (5) for
k = 3, 5, 7, . . . and the probability amplitudes are real. Here we give some details about the
evolution of the third-photon coherent states with the standard JCM when the atom is initially
in the excited atomic state. For this case one can easily show that

F2(T ) = 〈n̂(0)〉2 − 〈n̂(0)〉
∞∑

n=0

P(n) cos(2T
√

3n + 4), (36)
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where 〈n̂(0)〉 is the initial mean-photon number of the third-photon coherent state. On the
other hand, the corresponding atomic inversion is

〈σ̂z(T )〉 =
∞∑

n=0

P(n) cos(2T
√

3n + 1). (37)

In the strong-intensity regime expressions (36) and (37) yield

〈σ̂z(T )〉 � 〈n̂(0)〉2 − F2(T )

〈n̂(0)〉 . (38)

Argument similar to that given for (22) shows that the revival time of the present case can be
obtained through the relation

2TR[
√

〈n̂(0)〉 + 3 −
√

〈n̂(0)〉] � 2π, (39)

which leads to TR = 2π
3

√〈n̂(0)〉, i.e. it is three times smaller than that associated with the
initial coherent state case.

4.2. Numerical simulation

Similar arguments as those given in section 3 show that amplitude-squared fluctuation factors
(34) of the mth (m > 2) JCM can exhibit behaviour similar to that of 〈σ̂z(T )〉m=1 only when
the values of Re〈â2(T )〉 and Im〈â2(T )〉 are very small (or zeros). In this case the forms of
Re〈â4(T )〉 and 〈σ̂z(T )〉m=1 have to be comparable. Using similar procedures as those given
in section 3 one can deduce the proportionality factor as

f (n) = mn
m−3

2 . (40)

Expression (40) indicates that S2(T ) can provide behaviour similar to that of 〈σ̂z(T )〉m=1 only
when m = 3. This is similar to that associated with the normal fluctuation but here f (n) = 3.
One can deduce the corresponding rescaled amplitude-squared fluctuation factor of the third
JCM case, which includes behaviour typical to that of 〈σ̂z(T )〉m=1 as

Q2(T ) = S2
(

1
3

) − 〈n̂(0)〉2

〈n̂(0)〉2
. (41)

Comparison between (31) and (41) shows that the interaction time in (31) is two times greater
than that in (41) owing to the fact that we deal with the square of the field amplitude. Finally,
similar to the normal-fluctuation case the rescaled amplitude-squared fluctuation factor (41)
is insensitive to the values of the relative phases of the atomic system.

5. Conclusions

In the present paper, we have discussed the possibility of relating the information involved
in the fluctuation factors of the mth JCM to the atomic inversion of the EHA. We have made
some comments on the differences between the EHA and MEHA. Generally, we have shown
that there are two approaches, namely, natural phenomenon and numerical simulation. For the
natural-phenomenon approach we have shown that there is a class of states for which fluctuation
factors can include information on the corresponding atomic inversion naturally. This has
been shown not only for normal fluctuations but also for amplitude-squared fluctuations.
Furthermore, for such an approach fluctuation factors can exhibit coherent trapping based on
the values of the relative phases of the atomic system. On the other hand, for the numerical-
simulation approach we have shown that for specific value of m, in particular m = 3, the
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fluctuation factors (or one of them) of the normal fluctuations as well as the amplitude-squared
fluctuations can include the RCP similar to that associated with the atomic inversion of the
standard JCM. More illustratively, the evolution of the quadrature fluctuations of an initially
given field state interacting with a two-level system by a three-photon transition reflects the
RCP phenomenon of the hypothetical interaction of the same field state with a two-level system
by one-photon interaction where the level spacing is one-third of that of the former system.
Furthermore, we have deduced the forms of the rescaled fluctuation factors for this case, which
can involve typical information on the atomic inversion of the standard JCM. These forms
would be helpful for experimentalists. In contrast to the natural approach, fluctuation factors
here are insensitive to the values of the relative phases of the atomic system.

In fact these results are novel and indicate that the homodyne detector [25] can be used
to measure the RCP. In this respect the signal coming from the microwave cavity is optically
mixed with a strong coherent local oscillator using 50:50 beam splitter. Then the emerging
fields are detected and the photocurrents are electronically treated in such a way that the
measured quantity is the rescaled fluctuation factors. Quite recently, a similar set-up was
given for measurement induced and quantum computation with atoms in optical cavities [26].
Moreover, in cavity QED, the homodyne detector technique has been applied for the single
Rydberg atom and one-photon field aimed at studying the evolution of the field phase for
the regular JCM [27]. Nevertheless, for the nonlinear version of the JCM in an ideal cavity
(Q = ∞), e.g. the two-photon JCM, the detuning parameter � should be much greater than
the Rabi frequencies of the one-photon transition (� = 33.3 MHz in Cs, � = 39 MHz in
85Rb); thus the Stark shift and the two-photon coupling are appreciable [28]. Moreover, the
progress in the trapped ions [29] and micromaser [30] is promising to produce the phenomenon
presented in this paper. This is related to the fact that the two-photon Rydberg atom has already
been realized in the micromaser [31]. We hope in the near future that it would be possible to
produce a frequency within the range allowed by the equation ω = ω1 + ω2 + ω3 where h̄ω is
the energy difference between the two levels and ω1, ω2, ω3 are the frequencies of the three
photons generated by the transition.
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